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Abstract. Preserving the confidentiality of data in a distributed sys-
tem is an increasingly important problem of current security research.
Distributed programming often involves message passing over a publicly
observable medium, which opens up various opportunities for eavesdrop-
ping. Not only may the contents of messages sent on a public channel
reveal confidential data, but merely observing the presence of a mes-
sage on a channel for encrypted traffic may leak information. Another
source of leaks is blocking, which may change the observable behavior of
a process that attempts to receive on an empty channel.

In this article, we investigate the interplay between, on the one side, pub-
lic, encrypted, and private (or hidden) channels of communication and,
on the other side, blocking and nonblocking communication primitives for
a simple multi-threaded language. We argue for timing-sensitive security
and give a compositional timing-sensitive confidentiality specification. A
key contribution of this article is a security-type system that statically
enforces confidentiality. That the type system is not over-restrictive is
exemplified by a typable distributed file-server program.

1 Introduction

Standard security infrastructure provides no satisfactory guarantees for preserv-
ing the confidentiality of data that is manipulated by computing systems. Con-
sider a file-client program that accesses a distributed file server and manipulates
confidential files via a publicly accessible network. In order to preserve the data’s
confidentiality, an array of security mechanisms is typically involved. First, an
access control policy may enforce an authorized manipulation of files. Second,
confidential data may be encrypted before it is sent on a public channel. Third,
a firewall may protect the file server to restrict access from outside the sub-
network. While useful security building blocks, these standard techniques alone
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fail to guarantee that the confidentiality of data is preserved throughout the
computation. The main reason is that these mechanisms ignore the informa-
tion flow inside the program. Indeed, the file-client program that has legitimate
access through the firewall, sends only encrypted data, and complies to access
controls, may still leak information. For example, the program may contain the
fragment if fileScan(“fo0”) = finApp then flag := true where flag is a boolean
variable (initialized to false) that signals whether to create a public temporary
file containing a copy of the file “foo”. If “foo” contains financial application
data (fileScan(“foo”) = finApp holds), then this program successively surpasses
the standard security mechanisms and introduces an undesired information flow.
This is an example of an implicit [16] flow through a condition that depends on
sensitive information (as opposed to an ezplicit flow performed by assigning sen-
sitive data to a public variable). These leaks might be intended (when planted
by a Trojan-horse program) or unintended (when caused by bugs, misconfigura-
tion, debugging code, etc.). Syntactic scanning for malicious code (as realized by
antivirus software) provides limited defense: rejecting a “black list” of syntactic
patterns of known attacks does not preclude new attacks or semantic variations
of the old ones.

An increasingly popular approach for identifying insecure information flow in
programs is based on the notion of noninterference [20]. Suppose data, manipu-
lated by a program, is partitioned into high (private) and low (public). According
to noninterference, the program is secure iff high inputs do not interfere with
low-observable behavior of the system (low outputs, timing, etc.). Originating
from early work of Denning [15,17] and Cohen [13,14], a large body of work has
followed the noninterference-based approach to confidentiality for various pro-
gramming languages including [2,22,47,49,29,6,44,45,43,12, 32, 46].> We fol-
low this line of work in our definition of security? for a language enriched with
message passing.

Information flow in distributed languages. As computing systems become in-
creasingly connected, multi-threaded and distributed programming languages be-
come increasingly important [8]. Typical distributed languages heavily rely on
message passing (e.g., Erlang [9] and Java [21]). Client-server applications are ex-
amples of message-passing-based programs. For instance, a distributed file-server
program may create a new thread for every incoming request. Such a request
is a message (passed by the client program) to open, read/write, and close a
file. The server responds with messages that grant or deny these accesses. Due
to the distribution, messages often travel over a publicly observable medium.
This opens up opportunities for compromising the confidentiality of data. Not
only may messages’ contents reveal confidential data, but merely observing the
presence of a message may lead to an undesirable leak. The latter possibility
requires particular care when message contents are protected by encryption. An-
other source of leaks is blocking, which may change the observable behavior of a

! For motivating noninterference for confidentiality we refer to [35, 50, 45].
2 Security is restricted to confidentiality in the rest if the article.



process that attempts to receive on an empty channel. In a similar fashion, the
timing behavior of the program may cause a flow that the attacker can observe.
Hence, we design a noninterference-based security specification that, in addition
to explicit and implicit flows, rejects these other flows.

Static vs. dynamic confidentiality enforcement. Note that the above code can be
modified as flag := true; if file Type(“fo0”) # finApp then flag := false to perform
the same leak. It is nonexecution of the assignment flag := false that leads to
this undesirable flow. As confidentiality, in general, is not a safety property [36,
48], the use of dynamic information-control mechanisms is rendered impractical
as all potential execution paths must be monitored.

On the other hand, static analysis appears promising for enforcing security
(e-g., [50,22,47,6,44,28,51,11,40]). Such an analysis is often formulated as a
security-type system where security types correspond to the confidentiality level
of data (such as high and low). A key contribution of this article is a security-type
system that statically enforces confidentiality in a distributed system.

Overview. The rest of the paper is structured as follows. Section 2 explains main
assumptions and features of the security model. Section 3 introduces a multi-
threaded language with message passing. Section 4 presents a timing-sensitive
security specification, scrutinizes the security of communication primitives wrt
different types of channels, provides a series of examples, and concludes with
compositionality results. Section 5 proposes a security-type system that enforces
confidentiality. Section 6 gives an example of secure programming: a file server
that relies on both multi-threading and message passing. Section 7 concludes.

2 Security Model

Distributed-language features have many implications for language security. The
first step toward a tractable treatment is to clarify our assumptions behind the
security model and motivate the model’s intended features.

Compositionality. A prominent feature of a line of work [44,45,43] on noninter-
ference for programs is the compositionality (or hook-up [34,36,31]) properties
of security definitions. Such a property guarantees that when secure programs
are plugged into an appropriate context then the resulting program must be
secure. Hook-up properties provide an important foundation for modular sys-
tem design. Thus, we aim to construct a compositional security property for a
message-passing-enabled language.

Timing-sensitive security. Multi-threadedness (assuming a shared memory and
execution on a single processor) has been a major focus of research in the context
of noninterference-based confidentiality [22,47,49,44, 43,12, 32, 46]. Common to
these studies is the observation that if a program’s timing behavior depends
on high data, then the scheduler may reflect this dependence on the values of



low variables. Suppose h and [ are high and low variables, i.e., variables that
initially store high and low data, respectively. Consider the program if h =
1 then Ciony else skip where Ciony is a time-consuming computation. Clearly, the
program’s timing behavior may reveal information about h. This is an example of
a timing flow [27]. Moreover, in a multi-threaded setting this kind of leak may be
encoded into a program that leaks h to [. Indeed, suppose || separates two threads
in the two-threaded program (if h = 1 then Cjopy else skip);l :=1 | 1 :=0.
Under a typical fair scheduler (e.g., round-robin), if h is 1 then it is likely that
the assignment [ := 0 will have been executed before the assignment [ := 1; and,
thus, the value of h is likely to be copied to [. Note that the programs [ := 1
and [ := 0 are intuitively secure. Thus, accepting the original program as secure
implies discarding the vital hook-up properties. This example illustrates that
timing behavior, as observable by other threads, is an important ingredient for
the security definition.

Our timing model follows previous work [44, 32,43] in the assumption that
the execution of each computation step takes a single unit of time. While this
approach only roughly approximates the real timing behavior (which may de-
pend on implementation- and hardware-specific factors as, e.g., caching [6]), it
captures scheduler-based flows (as above) for a wide class of schedulers [44].

Distribution. In this article, we assume that threads are sequential programs;
and multi-threading occurs at the level of local computation that operates on a
shared memory. On the other hand, processes are potentially distributed such
that each process has its own memory. Processes communicate by a communi-
cation network (among local computations) exchanging messages. Each process
is potentially a multi-threaded program. Messages can be put onto a channel by
sending commands and be taken out of a channel by receiving commands. Each
channel is modeled by an unordered list (or a finite multiset) of messages, which
adequately reflects the assumption that, in a distributed system, the order in
which messages are delivered is not guaranteed.® For simplicity, we do not impose
a particular discipline on using channels. However, depending on an application,
it might be sensible to assume that, e.g., only one process can receive on a chan-
nel; or that a channel can be used only for point-to-point communication. Our
security condition is independent of these assumptions.

The adversary. We assume that communication channels are partitioned into
low, encrypted, and high channels. Low channels are observable by the attacker.
Communication on low channels corresponds to, e.g., communication using stan-
dard Internet protocols such as TCP/IP and HTTP. Here, the traffic is vulnera-
ble to eavesdropping. Encrypted channels are partly observable by the attacker.
Namely, the attacker may observe the presence of a message, but not its con-
tents. We adopt the (common) assumption that messages on such a channel are
encrypted by an unbreakable encryption algorithm; and keys involved cannot

3 An alternative assumption that a channel is a FIFO queue may be adequate for modeling commu-
nication channels at a high level of abstraction (e.g., pipelines in Unix). Our security specification
can be easily adapted for this case (cf. [33]).



be compromised. (Ongoing research addresses cryptographic aspects of formal
models of encryption [5,28,39].) Finally, high channels are secure connections
between processes that are invisible to the attacker. Communication on high
channels corresponds to, e.g., communication within a protected Intranet (an
IP-based network of nodes behind a firewall). Here, the attacker cannot see the
traffic.

The attacker has access to the low-observable part of the data and inter-
process traffic. We assume that the machines in the network are trusted, al-
though the code they run might come from an untrusted source. In this sense,
the attacker is both active? (as a supplier of malicious code) and passive as an
eavesdropper on the network. Our security-enforcement mechanism will reject
potentially insecure programs from the active attacker so that running the code
will not leak sensitive information to the passive attacker.

3 Multi-Threaded While-Language with Message Passing

This section presents the syntax and semantics of a simple multi-threaded lan-
guage that conforms to the assumptions of the previous section.

Local computation. Syntax and semantics for local computations are adopted
from [44]. The syntax of a command (or a thread) is given by the grammar in
Figure 1. Let boolean expressions B range over BOOL, arithmetic expressions
Exp range over EXP, variables var range over VAR, values val range over VAL,
and commands C, D range over CMD. Let C denote a vector of commands of
the form (C; ...C,). Vectors C, D range over CMD = U,cxCMD", the set of
multi-threaded programs, and cid ranges over CID, the set of channel identifiers.

A configuration (C, mem,c) (or QC_", mem, o)) is a triple, consisting of a
command C € CMD (or a vector of commands C € CMD), a local memory
mem : VAR — VAL and the third element o that accounts for interprocess
communication (described below). The memory mem is a finite mapping from
variables to values. The set of variables is partitioned into high and low security
classes. For simplicity (but without loss of generality), we will often assume that
there is only one variable for each security class, h and [, respectively. Further, we
define low-equality on memories by: mem; =, memsy iff the values of respective
low variables for mem; and memsy are the same.

Each program executes under a shared memory on a single processor (or in
a single process) such that at most one thread is active at any given point of
time. The small-step semantics is given by transitions between configurations.
The deterministic part of the semantics is defined by the transition rules in
Figure 2, omitting natural rules for skip, assignment, if and while for lack of
space (cf. [44]). Arithmetic and boolean expressions are executed atomically by
J transitions. The local —-transitions are deterministic. The general form of
a deterministic transition is either (C, mem,o) — ({), mem', o'}, which means

4 We do not consider integrity properties and thus active attackers faking messages are not relevant.



CMD ::= skip | VAR := EXP | CMD;; CMD; | if BOOL then CMD; else CMD,

| while BOOL do CMD | fork(CMD, CMD) | send(CID, EXP)
| receive(CID, VAR) | if-receive(CID, VAR, CMD;, CMD)

Fig. 1. Command syntax

{Cla mem, UD —- 4()) mem’7 UD
{C1; C2, mem, o) — {Ca, mem!, o)

[Seq:]

(C1, mem, o) — {C1 D, mem’, o)
(C1; Ca, mem, 7} — {(C4; C2) B, ment, o)

[Seqs]

[Fork] {fork(C, D), mem, o} — {CD, mem, )

Ezp ™™ val vals = o(cid)

[Send] {send(cid, Ezp), mem, o) — {(), mem, o[cid — val.vals])
[Rev] o(cid) = vals.val.vals'
{receive(cid, var), mem, o) — {(), mem[var — val], o[cid — wvals.vals'])
o(cid) = ()
[HERF] {if-receive(cid, var, C1, C2), mem, o} — {C2, mem, o)
[FRT] o(cid) = vals.val.vals'
{if-receive(cid, var, C1, C2), mem, g} — {C1,mem[var — val], o[cid — vals.vals'])
Fig. 2. Small-step deterministic semantics of commands
[Pick] (Ci, mem, a) — (C, mem/, o’}
({Cy...Ch), mem,a) = {(Cy...Cie1CCiy1 . ..Ch), mem!, o)
(Step] {C_';c, memy, o) — {d,’c, memy, o’}

Q(Cymema). . .,(Crymemy), o> —» <(Chymemy),. . .,(d;,memD,. . (€, memy) o>

Fig. 3. Concurrent semantics of programs

synch-send(cid, Exp) = receive(destReady|cid], readyVar);send(cid, Ezp);
receive(destAck[cid), ackVar)

synch-receive(cid, var) = send(destReady|cid], “ready”); receive(cid, var);
send(destAck[cid], “got it”)

Fig. 4. Synchronous communication primitives



termination with the final memory mem/, or (C, mem,o) — (C' D, mem', o’ ).
Here, one step of computation starting with command C' in a memory mem
gives a new main thread C’, a vector D of spawned threads, a new memory
mem’ and new channel status ¢'. The command fork(C, D) dynamically creates
a new vector D of threads that run in parallel with the main thread C. This has
the effect of adding the vector D to the configuration.

The rule [Pick] in Figure 3 defines the concurrent semantics within a program.
Whenever the scheduler picks a thread C; for execution, a —-transition takes
place updating the command pool and the rest of the configuration according to
a (small) computation step of C;.

Communication primitives and global computation. We now present the commu-
nication primitives and global semantics, which we adapt from [33]. Let channel
contents range over CHVAL, the set of unordered lists over VAL. Given a chan-
nel id cid, the channel status function o : CID — CHVAL returns the unordered
list of messages that are currently waiting on cid.

The command send(cid, Exp) sends the value of an expression Fzp on a chan-
nel cid. We distinguish two receiving primitives. Blocking receive(cid, var) blocks
until it receives a value on the channel cid. Once the value is received, the vari-
able var is set to that value. Nonblocking receive if-receive(cid, var, C1, C2) always
continues execution. If the channel c¢id is nonempty then var is set to the received
value and execution continues with the command C;. Otherwise execution con-
tinues with the command C5. Note that the order of delivery does not necessarily
coincide with the order in which messages were sent. This accurately models our
assumption (cf. Section 2) implied by the distributed nature of the system. Note
that the primitive send is asynchronous in the sense that it does not wait for
the message to be received. A synchronous version synch-send blocks until the
message has been received by a synch-receive on the same channel. Synchronous
communication (synch-send and synch-receive) can be achieved by using asyn-
chronous communication primitives. Figure 4 displays how this can be done in
the simple case of at most one sender and at most one receiver for each channel
cid € CID (cf. [8]). It uses auxiliary arrays of channels destReady and destAck.
Care must be taken when constructing such an implementation when multiple
readers/writers are possible. (For example, the encoding of Figure 4 is then not
suitable as a destAck message may be received by a sender whose message is still
in transit). For our purposes, the key observation is that both synch-send and
synch-receive use receive in their implementations.

Given a (possibly distributed) collection of programs Ci,...,C,, in which
each program executes on its own memory memy, ..., mem,, respectively, a
global configuration <(Cy,memy), ..., (C,, mem,);ol> consists of two compo-
nents. The first component is a sequence of pairs each containing a program and
its memory. The second component is the channel status function o. Nondeter-
ministic —-transitions on global configurations are defined by the rule [Step] in
Figure 3. The rule [Step] is similar to the rule [Pick]. It ensures that a global
transition takes place whenever a local transition occurs.



4 Security Specification

Recall that noninterference means that low-observable behavior is unchanged as
high inputs are varied. The indistinguishability of behavior for the attacker can
be represented naturally by the notion of bisimulation (e.g, [18,44,46,12]). Fol-
lowing our justification of timing-sensitive security in the context of concurrent
and distributed programming in Section 2, we adopt the timing-sensitive strong
low-bisimulation [44] that can be defined on multi-threaded programs with [43]
and without synchronization [44]. If two commands might have a different timing
behavior depending on high data then they are not low-bisimilar. This definition
has been extended for a language with message passing, but only with high and
low channels for communication [33].

4.1 Timing-sensitive security definition

In order to lift low-bisimulation to handle encrypted channels we extend low-
equality =1, (defined earlier on memories) to relate channel status functions that
agree on their low-observable arguments. Let dom : CID — {high, enc, low} be

a function that given a channel id cid returns its security level. Formally, define
for 01,05 : CID — CHVAL:

01 =1 02 <= (Ycid € CID. dom(cid) = low => 01 (cid) = o2(cid) A
dom(cid) = enc = |01 (cid)| = |o2(cid)|)

where |o(cid)| is the number of messages on channel cid. This suits our assump-
tion that for the attacker: (i) low channels are fully observable, (ii) only the size
of encrypted channels is observable, and (iii) high channels are not observable.

Definition 1 Define strong low-bisimulation Xy, to be the union of all symmet-
ric relations R on command pools (programs) of equal size for which whenever
(C1...Cp) R{D;1 ...Dy,) then for all mem;, mems,o1,02,i we have

(Ci, memy, 1) —(C", mem},o1) A memy =, mema A o1 = 0o => AD', mem}, 7.
{D;, mema, o2) — (D', memb,, ab) A mem] =1, memh Ao} =105 ANC' R D'

Intuitively, two programs (C;...C,) and (D;...D,) are low-bisimilar iff (i)
they are command vectors of the same size and (ii) for each pair of respective
commands C; and D; occurring in the same position ¢, varying the high parts of
memories, the contents of encrypted channels (but not size) and the contents of
high channels (including the size) at any point of a computation does not intro-
duce any difference between the low parts of the memories, the sizes of encrypted
channels and the contents of low channels throughout the computation. Despite
any high variation such two commands will still execute in lock step, i.e., their
timing behavior is the same. We are ready to state the security specification.

Definition 2 A program C is secure if and only ifé ~; C.

While one can prove that the relation &j, is transitive, it is not reflexive. For
example, the insecure program [ := h is not ®p-related to itself, as the low-
equality of memories can be broken by a computation step.



4.2 Security of communication primitives

This section is devoted to the communication primitives and their effect on
security. Of particular interest is the identification of secure contexts for hook-up
properties (cf. Section 2) involving communication primitives. Inserting secure
programs in such a context should result in a secure program. In the next section,
we will derive a security-type system from the hook-up properties. Define an
expression Ezp to be low iff Vmem;, memsy. memy =1, memy = In. Exp ™™
n A Exp ™™ n. Otherwise, the expression is high. In the rest of this section,
Ezxpy, ranges over high expressions while Exp ranges over arbitrary expressions.

Send. Sending on either a high or an encrypted channel is a secure command,
because send is nonblocking. Indeed, executing send(cid, Exp) after varying the
high part of the memory and channel status function will always result in low-
equal memories and low-equal channel status functions. This is true for both high
and encrypted channels: low-level observations remain unchanged in the case of
sending on a high channel. In the case of an encrypted channel, the size of the
channel will always be increased by 1 independently of the variation of high data.
To show that such a program is secure we, according to Definition 1, need to
construct a symmetric relation that makes this program low-bisimilar to itself.
One suitable relation is the relation {(send(cid, Ezp),send(cid, Ezp)), ({), ()}
This proves that send(cid, Exp) is a secure ground context for any expression
Exp. This and following examples of communication primitives and their security
are collected in Figure 7 in Appendix A.

However, if a send occurs in a branch of a high conditional (i.e., a conditional
whose guard is a high expression), then sending on an encrypted channel in one
branch and not sending in the other (e.g., if Ezp, then send(cid, Exp) else skip)
makes low-observable behavior different. Namely, the size of the channel will be
different when varying the initial value of h. Formally, take mem; and mems such
that memy =1, mems, Exp, ™™ false, Expy, ™™ true (which is possible be-
cause Ezpy, is high), and o= A(cid).(). Since (if Ezpy, then send(cid, Fzp) else skip,
memy, o) — {skip, memy, o) and (if Ezp, then send(cid, Ezp) else skip, mems, o)
— ({send(cid, Ezp), memy, o) holds, for the initial program to be secure it must
be the case that skip &1 send(cid, Ezp). However, we have {skip, mem;,o) —
{{), memy, o) and (send(cid, Ezp), mems, o) — ({), memy,o[cid — (n)]), where
Ezp ™™ n. Clearly, 0 #L o[cid — (n)] for any n because dom(cid) = enc.
Note that the same program for a high channel is perfectly secure.

A similar argument explains why sending on different channels depending
on a high condition (e.g., if Expy, then send(cid, Exp) else send(cid, Exp')) is in-
secure. Only when sending (possibly different) values on the same channel in both
branches, may a command be secure (e.g., if Ezpy, then send(cid, Exp) else send(cid,
Exp")) for an encrypted channel. Sending Ezpj, on a low channel ¢l is, naturally,
insecure (e.g., send(cl, Exzpy)).

Receive. Receiving on a high channel (e.g., receive(cid, h)) is insecure as it may
introduce blocking if the channel is empty. On the other hand, receiving on an



encrypted channel is secure because the number of messages on an encrypted
channel is the same for two low-equal channel status functions. As is the case
with conditional sending, conditional receiving is insecure for encrypted channels
(e.g., if Expy, then receive(cid, h) else skip and also if Ezpy, then receive(cid, h) else
receive(cid', h)) unless the same channel is used (e.g., if Ezpy, then receive(cid, h)
else receive(cid, h')). Using a low variable for storing the data received on a high
or encrypted channel (e.g., receive(cid, 1)) is, of course, insecure.

Nonblocking receive if-receive(cid, h, C1, C2) on an encrypted channel is secure
provided both branches C; and C; are secure programs. Indeed, what branch was
taken is observable by the attacker because it is observable whether the channel
cid is empty. In case cid is high, the stronger condition C; &, C2 (which implies
that Cy and C> are secure by the transitivity of the relation ®&j,) is imposed to
ensure the security of the overall program. Such a condition guarantees that the
behavior of the branches is indistinguishable for the attacker.

Synchronous communication. Both synch-send and synch-receive inherit their
security properties from the receive that is used in their implementations. This
means that neither synchronous sending nor receiving is secure on a high channel.
For an encrypted channel cid, the programs synch-send(cid, h), synch-receive(cid,
h), if Expy, then synch-send(cid, Ezp) else synch-send(cid, Exp'), and if Ezp;, then
synch-receive(cid, h) else synch-receive(cid, h') are secure.

4.3 Lessons learned

Essential implications for the programmer from our consideration of the secu-
rity of communication primitives wrt different types of channels can be briefly
summarized as follows:

— High channels allow for liberal use of send in the branches of high condition-
als. However, receive on a high channel is not secure due to the potential
introduction of blocking. As a result, the programmer is restricted to the
nonblocking if-receive which masks the presence of messages on the channel.

— Encrypted channels are appropriate for both send and receive, but restrictive
on high conditionals. Thus, when the occurrence of a communication of some
high data does not depend on any high data, it is an appropriate channel for
an efficient implementation. Indeed, as receive is a secure primitive, there is
no need for the busy-waiting loops with the if-receive primitive.

— if-receive is a secure primitive for both high and encrypted channels, but
for encrypted channels receive is preferable over the inefficient busy-waiting
loops with if-receive.

— Each of the synchronous primitives synch-send and synch-receive inherit their
restrictiveness from receive. This implies that neither synchronous sending
nor synchronous receiving is a secure command for a high channel.

— Confidentiality might be compromised if communication primitives operat-
ing on encrypted or low channels are used in the branches of a high if or
if-receive that receives on a high channel. This is similar to implicit flows
that are the effect of an assignment to [ in the branches of a high if.
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4.4 Hook-up properties

Supported by the intuition of Sections 4.2 and 4.3, we present the composition-
ality result for the complete language. This result extends the secure congruence
theorem for a multi-threaded language [44] to contexts that preserve security in
the presence of message passing. The proof of the hook-up result is conducted
by the “up to” technique [37]. Let [#] be a hole for a command. A context
Cley,...,9,] for some n > 2 is secure iff it has one of these forms:

Cle1,...,9,] = =skip | h:= Ezp |l :== Exp (Exp is low) | [e1]; [e2]
| if B then [e;] else [o2] (B is low) | while B do [e1] (B is low)
| fork([e1], ([e2]-..[®n])) | send(cid, Exp) (dom(cid) = high)
| send(cid, Exp), receive(cid, h) (dom(cid) = enc)
| send(cid, Ezp), receive(cid, var) (dom(cid) = low, Ezp is low)
| if-receive(cid, h, [#1],[®2]) (dom(cid) = enc)
| if-receive(cid, var, [1],[e2]) (dom(cid) = low)

Theorem 1 (Hook-up) If for some n > 2 the context Cloq,...,9,] is a secure
context and Ch,...,Cy are secure then C[Cy,...,Cy] is secure. If Cle;, 03] =
if B then [e;] else [#3] (B is high) or Cle;,e5] = if-receive(cid, h,[®1],[®2]) (such
that dom(cid) = high), then C[Cy,C2] is secure provided C R, Cs.

5 Type-based Security Analysis

This section presents an automatic compositional analysis for enforcing program
confidentiality, extending previous approaches [6,44] to handle communication
primitives. Due to the compositional nature of the type system, both designing
it and proving it to be sound are greatly facilitated by the hook-up results.

The type system. The analysis is based on a type system that transforms a
given program into a new program. Either the initial program is rejected (due
to explicit, implicit or other insecure information leaks) or it might be accepted
by the system and transformed into a program that is also free of timing leaks.
The transformation rules have the form C' < C' : §l, where C is a program,
C" is the result of its transformation and S/ is the type of C". The type Sl is
C"’s low slice. The low slice Sl has no occurrences of h and models the timing
behavior of C’", as observable by other threads/processes.

Any expression can by typed high (as it might depend on h). On the other
hand, only expressions that have no occurrences of h are typed low. (These
expressions can be safely used in assignments to [.) Typing rules for expressions
and communication primitives are presented in Figure 5. Typing rules for other
language constructs are like in [44]. The rule [Syign] types a send on a high channel
with the low slice skip. Although receive on a high channel is not typable, if-receive
can be typed after cross-copying the branches (as for if on a high conditional
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[Exp]

[Shign]

(IR hign]

[Senc]

[Renc]

[TRenc]

[SSenc]

[SRene]

[Siow)
[Riow)

R 0w)]

[SSlow]

[SR.ow)]

h ¢ Vars(Ezxp)

Ezp : high
P - Mg Ezp : low

cid is high
send(cid, Ezp) — send(cid, Ezp) : skip

CL = C; Sl Cr— Cé : Sly al(Sll) = al(Slg) = false
if-receive(cid,h,C1,C2) — if-receive(cid,h,C1;S!2,S11;C%) : skip; Sl1; Sla

cid is enc
send(cid, Ezp) — send(cid, Ezp) : send(cid, 0)

receive(cid, h) < receive(cid, h) : receive(cid, h)

C1%Ci : Sl CQ%Cé:Sb
if-receive(cid,h,C1,C2) < if-receive(cid,h,C! ,C}): if—receive(cid,iz,Sll ,Sl2)

synch-send(cid, Ezp) — synch-send(cid, Ezp) : synch-send(cid, 0)

synch-receive(cid, h) < synch-receive(cid, h) : synch-receive(cid, h)

cid is low
Ezp : low
send(cid, Ezp) — send(cid, Ezp) : send(cid, Ezp)

receive(cid, var) < receive(cid, var) : receive(cid, var)

C1‘—)C;:Sl1 C2L)Cé:Sl2
if-receive(cid,var,C1,C5) < if-receive(cid,var,C1,C}) : if-receive(cid,var, Sl ,Sl2)

Ezp : low
synch-send(cid, Ezp) — synch-send(cid, Ezp) : synch-send(cid, Ezp)

synch-receive(cid, var) < synch-receive(cid, var) : synch-receive(cid, var)

Fig. 5. Security typing of expressions and communication primitives
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[6,44]) to equalize the timing behavior independently whether the channel cid
is empty (the rule [IRpign]). To (conservatively) prevent potential implicit flows,
no assignment to [ or communication on encrypted or low channels is allowed in
the branches. Let al(C') be a boolean function returning ¢rue whenever there is a
syntactic occurrence of either an assignment to ! or a communication primitive
on encrypted or low channels. The condition al(Sl;) = al(Sls) = false prevents
implicit leaks. The slice of the overall command is the sequential composition of
the slices of the branches prefixed with a skip corresponding to the time tick for
the guard inspection.

Typing communication primitives on encrypted channels is compositional,
i.e., the type (slice) of a program is assembled from the types (slices) of the
program’s components. Although the low slices of the typing cannot use h, they
still must expose the same behavior wrt |cid|. This is achieved by using 0 instead
of the potentially high Ezp in the slice in [S¢pnc] and [SSenc], and using versions of
receive, if-receive, synch-receive that do not update h in [Renc], [IRenc] and [SRenc)-
For this purpose we use the notation var where [ =1 and h = _ to indicate the
case that h is not updated after a reception. Note that the generation of such
slices does not change the semantics of the original program. Indeed, no low slice
Sl created in [Senc] Or [SSenc] is used in cross-copying rules because al(S1) = true.
Directed by the hook-up result, we proceed analogously to derive the types of
communication primitives on low channels.

Correctness of the analysis. The correctness of the analysis follows from the
observation that the attacker cannot distinguish the result of the transformation
and its slice. In other words, C—C 48l implies C' =~y Sl , which can be proved
by the hook-up theorem. By the transitivity of &, we have C" =, C'. This leads
us to the correctness theorem.

Theorem 2 (Correctness of the Analysis) C— C:Sl= C" is secure.

6 Example of Secure Programming: A File Server

The correctness theorem guarantees robust timing-sensitive security, but are
there any useful secure programs? While we refer to [7] for efficient secure al-
gorithms (such as sorting and searching) in a sequential setting, let us return
to the distributed and multi-threaded file server and client programs and sketch
how they can be typed.

Consider the program fragments in Figure 6. The multi-threaded file server
ServerMan dynamically creates threads Server[i] (i € N) upon new requests
from a file client Client[j] with the thread identifier j € N. The purpose of
the file server is to store confidential data and to support fast accesses over a
network that might be audited by attackers. Hence, the use of encrypted channels
is a natural necessity.® The channels open, open[i], openReply[i], access[i] are

5 This is practiced, e.g., at the “privacy level” in the DCE/DFS distributed file system.
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ServerMan = while true
do receive(open, (fileName, clientID));
.../* generate a fresh id ¢ for the thread to be created */
fork(skip, Server[i]); /* fork off a thread handling accesses */
send(open[i], (fileName, clientID))
Server[i] = receive(open[i], (fname, clid));
... /* open file fname; if successful then: */
send(openReply|clid],); more := true;
while more
do receive(access[i], request);
if action(request) = READ then ...
if action(request) = WRITE then ...
if action(request) = CLOSE then ... more := false
send(accessReply[clid],...) /* send access results */
Client[j] = send(open, (“fo0”, j)); receive(openReply[j], serverID);

send(access[serverID], accessArgs); receive(accessReply[j], results)

Fig. 6. A multi-threaded file server and a file client

encrypted channels. Thus, assuming the variables fileName, fname, accessArgs,
request, results are high, these programs can be typable and, thus, are secure.®

This example illustrates that our security condition and type system, al-
though being rigorous enough to ensure security, are not over-restrictive. Namely,
useful programs that fulfill our conditions can be written. Note that using en-
crypted channels we are able to avoid a busy-loop waiting overhead (that would
have been necessary, e.g., in [33]) and yet guarantee timing-sensitive security.
Due to space limitations, the example focuses on only two primitives, send and
receive. However, similar examples exist for the usability of if-receive, synch-send
and synch-receive wrt our security condition.

7 Conclusions

It might seem astonishing that, in some cases, secure programming with pro-
tected (high) channels is more restrictive than with encrypted or cleartext (low)
channels. However, this is the case for the receive primitive which is insecure
for high channels but secure for encrypted and low channels. This phenomenon
stems from the nonmonotonic nature of confidentiality properties: the fact that

5 Note that the example assumes an extension of our language with pairs and arrays. Security
definition and the type system (along with the correctness proof) can be adjusted for these
constructs following [6].
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the attacker observes less about data does not imply that the data requires less
(or, conversely, more) protection. Indeed, as can be seen from our security spec-
ification, as the attacker’s observational power decreases, the range of possible
values of sensitive data increases.

Contributions. In order to investigate the interplay between the observational
power of the attacker and the expressive power of a programming language fea-
turing multi-threading, (non)blocking and (a)synchronous message passing, we
have proposed a timing-sensitive confidentiality specification. This specification
accommodates three types of communication channels (for high, encrypted and
low data) and enjoys a hook-up property wrt a number of contexts. To the best
of our knowledge, this article is the first to prove hook-up properties for timing-
sensitive confidentiality in a distributed language. As an important contribution,
we have derived a sound security-type system from the hook-up result. Essential
implications for programming secure systems are summarized in Section 4.3.

This article follows [33] as a starting point, where security in a distributed
language is defined. The novelties of this article wrt [33] include an investiga-
tion of encrypted channels, synchronous communication primitives, an analysis
of what primitives can be used securely for what channels, a development of
hook-up properties at the level of commands’ and, most importantly, a security
enforcement mechanism in the form of a security-type system.

Related work. As far as we are aware, Reitman’s security logic [41] is the first to
address message-passing primitives in the context of confidentiality. His primi-
tives correspond to our asynchronous send and receive with only one generic type
of a communication channel. Banétre and Bryce’s security logic [10] describes se-
curity properties for a language based on CSP [24]. Their primitives correspond
to our synchronous send and receive and, thus, their use is severely restricted.
Both of these logics lack noninterference proofs and automatic inference algo-
rithms. Furthermore, they do not treat timing flows. Mizuno and Oldehoeft [38]
consider information flow in an object-oriented distributed system. The lack of
noninterference results and a costly runtime security mechanism (that is invoked
every time a message is sent) are major drawbacks of this work.

Abadi and Blanchet [1,3] have devised type systems that guarantee confi-
dentiality for a calculus of cryptographic protocols, the spi calculus [4]. This
approach is capable of handling key-exchange protocols. However, their formal-
ism is specific to the spi-calculus: secret keys and their usage are hidden from the
low-observable view so that the resulting security condition allows for protocols
with encryption to be represented in a noninterference-like fashion.

Honda et al. propose a powerful type system for tracking information flow
in the asynchronous pi-calculus [25,26]. While not designed for expressing infor-
mation flow in high-level languages, their rich channel types allow for encoding
other type systems (e.g., [47]) for high-level multi-threaded languages.

7 The compositionality principle of [33] focuses on the level of processes rather than on the level of
commands. It asserts that the composition of secure processes results in an overall system that
satisfies a global trace-based security property.
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Zdancewic et al. introduce secure program partitioning as a technique for
secure distributed programming on heterogeneously trusted hosts [52]. This ap-
proach is appealing because it addresses the interaction between confidentiality
and integrity in a distributed system. However, no convincing security assurance
results are available for secure program partitioning.

There is a large body of work on noninterference in the setting of process alge-
bras (see [18,42] for an overview) and other event-based systems (see, e.g., [30]
for an overview). Common ground with many process algebra-based security
specifications and our study is bisimulation-based security and an asynchronous
semantics of computation (which allows for modeling subcomputations with dif-
ferent relative speeds). However, our primary focus is different in considering (i) a
concrete programming language, (ii) a timing-sensitive security specification and
(iii) asynchronous message passing. Although some recent process-algebra-based
investigations have explored timing-sensitive security (e.g., [19]) and security in
an asynchronous setting (e.g., [23,26]), timing is often disregarded; and hand-
shaking models that require both sides to synchronize during communication are
typically used. There is no such requirement under asynchronous message pass-
ing (as expressed by send, receive and if-receive), which is suitable for modeling
programming in a distributed environment.

Future work. While we have assumed that programs are executed on trusted
hosts, some machines may be entirely controlled by the attacker in a realis-
tic distributed setting. Thus, an important goal for future work is to obtain a
confidentiality specification that is sensitive to malicious hosts.

It is essential to lift another practically unrealistic assumption—that all mes-
sages are reliably delivered. We expect that both the security condition and the
type system are robust wrt message loss. Indeed, assuming communication fail-
ures do not depend on sensitive data, we can model a lossy channel cid by the
process fail(cid) = while true do if-receive(cid, .4, skip, skip) for a fresh high
variable ;4. That the security of a system cannot be compromised by such a
failure process is a simple corollary of the hook-up result and the observation
that fail(cid) is secure for any cid.

Acknowledgments Thanks to Dan Grossman, Andrew Myers, David Sands,
Fred Schneider, Peter Sewell, and Steve Zdancewic for insightful feedback.
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Appendix A

v =%secure” x=F“insecure” dom(cid)=dom(cid')
‘ program ‘ cid- enc ‘ cid- h,igh‘
send:
send(cid, Ezp) v
if Ezpy, then send(cid, Exp) else skip X v
if Expy, then send(cid, Exp) else send(cid’, Exp') X v
if Ezpy, then send(cid, Exp) else send(cid, Exp’)
send(cl, Expy) (dom(cl) = low) X
receive:
receive(cid, h) v ‘ X
if Exp, then receive(cid, h) else skip X
if Expy, then receive(cid, h) else receive(cid’, h) X
if Expy, then receive(cid, h) else receive(cid, h') v ‘ X
receive(cid, [) X
if-receive:
if-receive(cid, h, Cy, C5) G122 G Ci =1 Cy
Co =p Co
if Expy, then if-receive(cid, h, C1, C2) else (skip; C3) x G121 Gy
Co = Cs
if-receive(cid, [, Cy, Cs) X
synch-send (dom(destReady[cid]) = dom(destAck[cid]) = dom(cid) for cide CID):
synch-send(cid, h) v ‘ X
if Expy, then synch-send(cid, Exp) else skip X
if Expp, then synch-send(cid, Ezp) else synch-send(cid!Exp’) X
if Expy, then synch-send(cid, Ezp) else synch-send(cid, Exp") v ‘ X
synch-send(cl, Exzpy) (dom(cl) = low) X
if Ezpy, then send(cid, Exp) else synch-send(cid, Exp) X
synch-receive (dom(destReady|cid]) = dom(destAck|[cid]) = dom(cid) for cide CID):
synch-receive(cid, h) v ‘ X
if Expy, then synch-receive(cid, h) else skip X
if Ezpy, then synch-receive(cid, h) else synch-receive(cid’, h) X
if Expp, then synch-receive(cid, h) else synch-receive(cid, h') v ‘ X
synch-receive(cid, ) X
if Expy, then receive(cid, h) else synch-receive(cid, h) X

Fig. 7. Examples on communication primitives and their impact on security
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