2.4 Towards an Evolutionary Formal Software-Development
Using CASL

Serge Autexier', Dieter Hutter?, Heiko Mantel?, and Axel Schairer?

(1) Saarland University, P.O. Box 151150, D-66041 Saarbriicken, Germany

(2) German Research Center for Artificial Intelligence, Stuhlsatzenhausweg 3, D-66123
Saarbriicken, Germany

Email: (1) serge@ags.uni-sb.de

(2) {hutter,mantel,schairer}@dfki.de

It has long been recognised that specifications in the large are only manage-
able if they are built in a structured way. Specification languages, like CASL
[2], provide various mechanisms to combine basic specifications to extensive
structured specifications. Analogously verification tools have to provide appro-
priate mechanisms to structure the correspondent logical axiomatisations and
different inference mechanisms. In practice, a formal program development is an
evolutionary process [4]. Specification and verification are mutually intertwined.
Failed proofs give rise to changes of the specification which in turn will render
previously found proofs invalid. For practical purposes it is indispensable to
restrict the effects of such changes to a minimum in order to preserve as much
proof effort as possible during a change of the specification.

The aims of this paper are twofold. First, we present the notion of a de-
velopment graph which forms the proof theoretical basis for the representation
of formal developments. A development graph is a directed graph with dif-
ferent kinds of directed links. The nodes in a development graph consists of
a consequence relation (specifying the underlying logic) and a set of local ax-
ioms. Directed links between nodes are labelled by consequence morphisms and
allow one to relate theories to each other. Four kinds of directed links occur
in a development graph: Global definition links include the mapped axioms of
the source node as additional axioms to the target node while global theorem
links postulate that the mapped axioms are theorems within the target node.
These global theorem links allow for a representation of properties like ”satis-
fies” or "implements”. In order to support an efficient management of change,
the global links are decomposed into local links between theories, which enables
a fine grained localisation of the effects of changes in a specification.

In a second part, we present how CASL specifications are transformed into
development graphs via an explicit representation of the specification’s struc-
ture, called theory representations (TR), cf. for example [3]. It makes explicit
the structure and content of the specification text that is relevant for the de-
ductive process in a canonicalized way. These TRs are then translated into the
corresponding development graphs. When changing the specification text, a
new TR is computed and is compared to the previous one. Differences between
the two are then translated into the necessary changes to the actual develop-
ment graph. When these changes take effect the management of change defined
over development graphs ensures that the overall development enters a new con-
sistent state. Thus the representation of the specification’s structure via TRs



connects Casl specifications and their representation in the development graph.
The described framework has been implemented within the INKA 5.0 system
and is the central part to represent and manage formal software developments.
The development graph is an experiment in providing a general structure meet-
ing the requirements arising from the representation of structured specifications,
the evolutionary aspects of the specification process and the need for a sophis-
ticated and strong deductive support to prove properties about specifications.

References

[1] S. Autexier, D. Hutter, H. Mantel, A. Schairer: System Description: INKA
5.0 - A Logic Voyager. In H. Ganzinger, CADE-16, Springer, LNAI 1632, 1999

[2] CoFi-task group on language design, ESPRIT working group 29432, EU,
1998. CoFI Webpage: http://www.brics.dk/Projects/CoFI/

[3] R. Harper, D. Sannella, A. Tarlecki: Structured presentations and logic rep-
resentations. In Annals of Pure and Applied Logic, 67:113-160, 1994

[4] D. Hutter et al.: Verification Support Environment (VSE), Journal of High
Integrity Systems, Vol. 1, 1996.



