System Description: inka 5.0 - A Logic Voyager

Serge Autexier!, Dieter Hutter?, Heiko Mantel?, and Axel Schairer?

! Saarland University, Fachbereich Informatik, Postfach 15 11 50,
D-66041 Saarbriicken, Germany, autexier@cs.uni-sb.de
? German Research Center for Artificial Intelligence, Stuhlsatzenhausweg 3,
D-66123 Saarbriicken, Germany, {hutter ,mantel,schairer}@dfki.de

1 Introduction

Originally developed as an automatic inductive theorem prover [2] based on res-
olution and paramodulation, the inka system was redesigned in inka 4.0 in the
early ’90s [8] to meet the requirements arising from its designated use in formal
methods. Meanwhile several large industrial applications of the verification sup-
port environment (VSE) [7] have been performed which gave rise to thousands
of proof obligations to be tackled by its underlying deductive system inka.

The new version of inka is a result of this long experience made in formal
software development. Thus, the major improvements of inka 5.0 are concerned
with the requirements arising when dealing with large applications. The user
database is distributed along different deductive units each of which consists
of an individual logic (consequence relation) and a set of (local) axioms. In or-
der to allow for the logical implementation of structured specifications as they
are provided in languages like CASL [3], the deductive units may import the
deductive reasoning of other units with the help of morphisms. Relationships
between different units are also postulated with the help of morphisms between
two units which give rise to various proof obligations. inka also supports the
evolutionary aspect of formal software development as it incorporates a man-
agement of change. It minimizes the proof obligations arising when changing a
deductive unit or defined relationships between some units. As a basis for the
implementation of different logics, inka provides an annotated A-calculus as an
underlying meta-language. Annotations are a generalization of the colour con-
cept [6] and are used to incorporate domain knowledge into the proof search
process. inka provides a uniform hierarchical proof datastructure and a generic
tactic definition mechanism to implement appropriate proof search engines.

2 System Description

Meta-level Language. inka supports the use of formulas of different logics
and proof-objects of different calculi. All these objects are encoded in a meta-
level language, based on a (ML-type) polymorphic A-calculus [4]. A-terms are
automatically kept in 87 long normal-form. Using A-calculus as meta-language
provides a clear concept of variables, namely bound and free variables.

16th International Conference on Automated Deduction, CADE -16, Trento, Italy, LNAI 1632,
pp- 207-211, Springer, July 1999. © Springer-Verlag Berlin Heidelberg 1999

208 Serge Autexier, Dieter Hutter, Heiko Mantel, and Axel Schairer

The annotations in inka’s A-calculus are described in a first-order term lan-
guage and are attached to occurrences of function constants and variables, to
A-abstractions and applications. The concept of annotations is a generalization
of the concept of colours [6], which has been developed in the context of induc-
tive theorem proving to encode the knowledge about the similarities between
induction hypothesis and induction conclusion [9]. They are used by tactics to
encode domain knowledge into logical objects and the underlying annotated cal-
culus supports the inheritance of the annotations. For a detailed description of
annotated A-calculus see [10,6].

The implementation of the annotated A-calculus also comprises a unification
for annotated A-terms with free variables [10,6]. The unification algorithm is
generic in the sense, that domain specific unification algorithms can be integrated
into it. Thus, specialized unification algorithms, which make use of semantic
properties of defined function constants, can be implemented and are integrated
in an object-oriented manner into the generic unification algorithm.

Hierarchy of Logics. inka provides a mechanism for user defined logics in
terms of so-called logic units (cf. Figure 1). The réle of a logic unit is to define a
truth-type and a language of

logical formulas. In addition | [wecmo

to the declarative content, a ||meriro oo HoL

logic unit may contain specific | T Logie: HoL

CALCULUS: HOL1

Meta-Level

domain-knowledge. For exam- |foe= 4 |

ple, a logic unit can contain || I Ev—
a specific theory unification al- Ly ﬁi::zf‘rﬂ‘:zol,)wen.

gorithm for formulas; for first- me P
order logic, a specific unifica- ‘

CALCULUS: FOL1

Logic: FOL

(alpha) >0

tion algorithm is implemented, |
. THEORY: Nat i THEORY: List(Nat)
which moves quantifiers over | Log o e
. . unctions: H Functions:
other connectives. Each time A I
. . . p:Nat -> Nat 3 app: List(Nat) x List(Nat) -> List(Nat)
a logic unit is used, the spe- R e [| Aoms
. . . . N . All x:Nat plus(0,x) = x: ! | imports: Nat »
cific unification is linked into § tLovl
the generic unification from the | ereen
underlying A_Ca‘lculus‘ This ap- THEORY: Elem ‘ THEORY: List(Elem)
proach differs essentially from G i S
Functions: Functions:
logical frameworks like LF [5] L) o
) . . :E?o mL\:t(E\em) x List(Elem) -> List(Elem)
or Isabelle [12] in which IOgICS, Gl cisilen) a0 = x:

respectively, are represented as
signatures in a dependent type Fig. 1. The hierarchy of logics and the devel-
theory or by an embedding into opment graph

a meta-logic.

In inka, a calculus is represented within a calculus unit which is related to a
logic unit and defines the proof objects as well as the basic calculus rules. E.g.,
in the sequent calculus unit for first-order logic, the proof-objects are sequents,
which are build from lists of first-order logic formulas. The implementation of
the basic calculus rules as well as the tactics for proof search are attached to the

System Description: inka 5.0 - A Logic Voyager 209

calculus units. If a calculus unit is used, its tactics are linked into the generic
deduction mechanism which supports forward as well as backward application
of rules. inka allows for an implementation of different calculi for different logics.
The tactics and calculus rules are implemented using the generic tactic definition
mechanism described in the paragraph Deduction. The proofs are constructed
by a uniform tactic mechanism and are represented in an uniform proof data-
structure (cf. Paragraph Deduction).

Furthermore, different kinds of relationships between logics are explicitly
represented by logic morphisms. Along these morphisms, formulas of one logic
can be transformed into equivalent formulas of another logic.

Development Graph. It has long been recognised that so-called specifications
in the large are only manageable if they are built in a structured way on the basis
of smaller specifications. Specification languages, like for instance CASL [3], pro-
vide various mechanisms to combine basic specifications to extensive structured
specifications.

inka supports the use of such structured specifications and thus also the
structured deduction by distributing the resulting logical axiomatization into
so-called deductive units. Each deductive unit describes a logical theory and
corresponds to a basic specification as defined in [3]. A deductive unit is linked
to a calculus unit defining its underlying consequence relation. The units can
be connected via consequence morphisms allowing the user to import (mapped)
theories to a deductive unit. The same mechanism can be used to postulate
relations between deductive units. Drawing a so-called theorem link from a unit
N; to a unit N» (wrt. a morphism o) gives rise to the proof obligation that the
mapped theorems of N; are valid within N,. inka provides several techniques to
minimize the arising proof obligations by making use of already existing relations
between other units linked to N; and Ns.

Deduction. The application of formal methods in an industrial setting (cf. [7])
results in an increased complexity of the specification and the correspondent
verification. Tackling arising proof obligations from industrial case studies, the
proofs are too complex to be done fully automatically but they are also too
longish to be done by hand. Thus there is a need to combine a high degree of
automation with an elaborate user interface to advise the deduction system in
case where built-in strategies are too weak to find the proof automatically.

All deductions in the inka-system are explicitely represented in a uniform hi-
erarchical proof datastructure, which is a generalization of the hierarchical proof
datastructure (PDS) developed for the 2MEGA-system [1]. It is realized by an
acyclic directed graph, whose nodes are annotated by proof-objects defined by
some calculus and whose edges are annotated by basic calculus rules or tactics.
The lowest proof level consists of edges annotated only by basic calculus rules
which are related to higher edges annotated by tactics. This datastructure al-
lows to view a proof on different levels of abstractions. Hence, the proof can be
communicated to a user on different levels of abstraction, which is an adequate
mechanism to support interactive proof construction.

210 Serge Autexier, Dieter Hutter, Heiko Mantel, and Axel Schairer

Tactics and calculus rules are implemented by a generic tactic definition
mechanism, which allows for a simple implementation of tactics and rules and
hides necessary updates of the proof graph from the tactic engineer. The tactic
definition mechanism allows for the tactic engineer to focus on parts of a proof-
object. Foci are explicitely represented and the designed tactics can manipulate
the content of their argument foci, without changing the foci themself. This is a
simple and efficient mechanism, offering the necessary level of abstraction to a
tactic engineer to support tactic design. The tactic definition mechanism already
existed in the old inka-system [8] and has been adapted to the hierarchical proof
representation and in order to allow for the manipulation of foci wrt. different
proof-objects within one tactic.

Interfaces. The user interface of the inka-system is an adaptation of the inter-
face system L£NUZ [13], which is a user interface for the ZMEGA-system [1].
LOUT has been adapted to be a generic user interface for theorem provers as for
instance a visualization of the development graph has been added. It is imple-
mented in the distributed Oz programming language [11] and the communication
with inka is done via a socket-communication. The interface between Lisp and
Oz is an abstract representation of the datastructures to be visualized while the
actual layout is done in Oz. This minimizes the communication effort between
Lisp and Oz and results in a sufficient speed of the visualization process.

The inka specification language is designed to include a subset of the Common
Algebraic Specification Language (CASL) [3], which is currently developed to
define a standard language for algebraic specifications.

3 Progress, Availability and Future

The inka 5.0 system is an experiment in providing a generic software verification
system. It is still in an incomplete, prototypical state. However, all basic mecha-
nisms described in this paper are implemented and used for some example logics
and sequent calculus proof search.

The core inka is implemented in Allegro Common Lisp. The interface runs on
distributed Oz, which is available for Unix and Windows.

As a next step we intend to integrate a logic for algorithmic function and
predicate definitions as well as the methods to prove their termination as tactics.
Termination proofs can be inspected and already proven lemmata can be used
during the construction of termination proofs, which are the main advantages
wrt. the black box implementation of these methods in the old inka system [8].

References

[1] C.Benzmiiller et al.: 2MEGA: Towards a mathematical assistant, In W. McCune
(ed), CADE-1/, Springer, LNAT 1249, 1997.

[2] S. Biundo, B. Hummel, D. Hutter, C. Walther: The Karlsruhe Induction Theorem
Proving System. In Jorg H. Siekmann (ed), CADE-8, Springer, LNCS 230, 1986.

3]
[4]
[5]

System Description: inka 5.0 - A Logic Voyager 211

CoFi-task group on language design, ESPRIT working group 29432, EU, 1998.
CoFI Webpage: http://www.brics.dk/Projects/CoFl/

L. Damas, R. Milner: Principal type schemes for functional programs, Ann. ACM
Symp. on Principles of Programming Languages (POPL), 1982.

R. Harper, F. Honsell, G. Plotkin: A framework for defining logics, Journal of
the Association for Computing Machinery, 40(1), 1993.

D. Hutter, M. Kohlhase: Managing Structural Information by Higher-Order Col-
ored Unification, Journal of Automated Reasoning, accepted, 1999.

D. Hutter et al.: Verification Support Environment (VSE), Journal of High
Integrity Systems, Vol. 1, 1996.

D. Hutter, C. Sengler: inka - The Next Generation. In M. McRobbie, J. Slaney
(ed), CADE-13, Springer, LNAI 1104, 1996.

D. Hutter: Guiding Induction Proofs, In M. Stickel (ed), CADE-10, Springer,
LNAT 449, 1991.

D. Hutter: Coloring terms to control equational reasoning, Journal of Automated
Reasoning, Vol. 18, 1997.

Programming System Lab, Saarland University, Saarbriicken, 1998. The Oz Web-
page: http://www.ps.uni-sb.de/ns3/oz/

L.C. Paulson: Isabelle, A Generic Theorem Prover, Springer, LNCS 828, 1994.
J. Siekmann et al.: A Distributed Graphical User Interface for the Interactive
Proof System 2MEGA. In R. C. Backhouse (ed), UITP98, Eindhoven Technical
University, Report 98-08, 1998.

